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Abstract: The modeling and analysis of the Atomic Force Microscope (AFM) cantilever beam is essential to understand
and to improve its operation. With approximately 140um , the cantilever beam has a probe tip at its free end, and, at the
clamped end, a PZT actuator is responsible to excite (depending on the operation mode) and move it in xyz directions.
While the probe tip scans the sample surface, a laser beam detects its deflections sending a signal to a photo detector.
Several operation modes may be used, depending on the sample characteristics and desired analysis. The tapping mode
is a common operation mode, in which the cantilever beam vibrates in a frequency close to its resonance and softly
touches the sample surface, while a feedback control system through the piezoceramic actuator is designed to keep the
probe tip-sample distance constant. The error between desired and achieved probe tip-sample distances is evaluated
and minimized. Thus, the necessary quasi-static base motion is obtained and used to determine the topology of the
sample surface. However, due to tip-sample nonlinear interaction forces, the feedback control system may become
unable to find the required base motion and, hence, from the point-of-view of the end user, the topology of the sample
surface, observed as a coloured pixel in a sample image, is poorly detected. Normally, this occurrence is identified
by an abnormal image constructed by the xy plane pixels obtained from the AFM. In this work, the piezoceramic base
actuator and the cantilever beam are modeled using the finite element method leading to a coupled system. Material
and geometric properties of the cantilever beam and probe tip are obtained from a real AFM device, which enables the
model validation. The tip-sample interactions are modeled using Lennard Jones potentials and numerical simulations
are performed to understand the effects of changing the tip-sample distance, as well as the effects of changing the
number of vibration modes of the cantilever beam.
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INTRODUCTION

One of the main features of the Atomic Force Microscope (AFM) is the ability to measure a wide range of properties
of surfaces with nanometer order sizes. Using the pair cantilever-probe, it is possible to obtain 3D images of nanoscale
sample topology. From this point of view, the AFM working process has become a topic widely studied in recent years.
According to Jalili and Laxminarayana (2004), modeling and analysis of the AFM system is essential to improve its
operation.

In the specific literature, several mathematical models are developed to represent the system composed of cantilever
beam, probe tip and base excitation. In most part of them, the system is modeled using 1 or 2-dof spring-mass-damper
system (Dankowicz, 2006; Misra et al., 2008; Nozaki et al., 2010; Rodrigues et al., 2011; Tusset et al., 2013). Another
approach is to use beam theories to represent the AFM cantilever beam, such as Bernoulli-Euler (Rodrigues et al., 2014;
Rutzel et al., 2003; Stark et al., 2004), and Timoshenko (Claeyssen, 2010; Hsu et al., 2007). Some of the disadvantages
of these previous approaches are that more complex beam geometries and boundary conditions are not accounted for and
it is more difficult to perform parametric analysis and design.

In this paper, the aim is to model an AFM system using the finite element method to represent the system composed of
cantilever beam, clamped-PZT-base and free end (tip mass and interaction forces). Numerical simulations are used, first,
to validate the model, through comparison with experimental results, and, then, to help understand the system behavior
under variation of the number of vibration modes, considered in the reduced model, and tip-sample distance.

MATHEMATICAL MODELING

This section aims to develop a mathematical model to represent the AFM system composed by the cantilever beam
and its free and clamped ends. As seemed in the figure 1, at the clamped end (x = 0), a PZT (Lead Zirconate Titanate)
piezoelectric ceramic actuator, responsible for the cantilever beam motion in z-direction will be considered. At the free
end (x = L), a tip mass, representing the probe tip, and points transversal force, representing the interaction between probe
and sample surface, are considered.

The AFM cantilever beam is modeled as a standard Bernoulli-Euler beam finite element model. It is also considered a
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probe tip with mass m, and inertia moment /; at its free end. At the clamped end, it is considered that the cantilever beam
is perfectly coupled with a PZT actuator. The cantilever beam is also considered to be homogeneous and uniform with
length Ly, width by, thickness &g, cross-section second moment of area I; and made of a material with Young’s modulus Ej,
Poisson’s ratio v and mass density ps. At the free end, an interaction force f;, represented by Lennard Jones Potentials is
also considered. The probe tip is initially set at a distance d from the sample surface.
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Figure 1 — AFM scheme

The tip deflections are detected by a laser beam that sends a signal to a photo detector. The acquired signal is then
compared to a constant value by a feedback control system, that point-to-point corrects this z value generating the local
pixel. Considering the standard Bernoulli-Euler hypothesis for a slender beam in xz plane deflection, the displacements
field may be written as

ﬁ()@y,z,l) = —zw/(x7t), v(-xa}@Z?t) = 07 W(Xay%f) = W()C,l), (1)

where w is the transverse displacement (in z-direction) and w' = dw/dx is the cross-section rotation angle.
Based on these kinematic hypotheses, the only non-null mechanical strain, that is the normal longitudinal strain &,
can be written from the usual strain-displacement relation as

& = —zw'. ()

X

Hermite cubic shape functions are assumed for the discretization of the transverse deflection w(x, ), along the element
length Lg,, such that a two node finite element with two degrees of freedom per node, namely deflection w; and cross-
section rotation angle w§ (i=1,2), is obtained as shown in Fig. 2.
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Figure 2 — Bernoulli-Euler beam finite element.
The elementary degrees of freedom (dof) column vector u, is defined as

u=[_w w w w ]t, 3)

and the transverse relative displacement of the cantilever can be written in terms of the elementary dof’s as
w(x, ) = Ny(x)ue (). 4)
Using Eq. 2, the normal strains can be discretized and written in terms of the elementary dof as

"

&5, = —Byu,, with By =N.. (5)
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At x = Ly, the cantilever beam is considered free, with actuation of interaction forces that will be properly modeled
in the next section. At x = 0, a sliding free boundary condition with w’ (0,¢) = 0 is considered. Later on, the left-
end transversal displacement w(0,7) will be defined as coincident to the PZT actuator longitudinal displacements u,(r).
Figure 3 represents a simple scheme of the cantilever beam taking into account a PZT actuator in the clamped end, where
u, is the cantilever beam base displacement due to the deformation suffered by the PZT actuator.
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Figure 3 — Schematic representation of the cantilever beam coupled to a PZT actuator.

The virtual variation of kinetic and potential energies may be written in terms of the elementary nodal dof vector as

/ 5T, di = — / SuM, i, di, 5U,, — Su'K,u,, ©)

where M, and K, are the elementary mass and stiffness matrices defined by

Lse Lse
M, = /0 PsANINydx and K, = /0 E,I,B'B,dx )

Accounting to the probe-tip at the free end of the cantilever beam and writing the deflection w(L,) and cross-section
rotation angle w' (L, ) of the probe tip as function of the global nodal dof vector, follows that

w(L,t)=Lyu and w(L,t)=Lyu, with L,=[0 --- 0 1 0] and Ly,=[0 --- 0 1]. (8)

Hence, the equivalent mass matrix corresponding to the probe tip, My, is written as

Mf L m[Lw + waIlLWX (9)

Using Eq. 9, the total mass matrix of the cantilever beam will be represented as Mz, = M +M,.

For the PZT piezoelectric ceramic actuator, it is considered a unidimensional longitudinal (in z-direction) deformation
and for which the internal (potential) energy can be represented by electric enthalpy, written in terms of the normal
longitudinal (in z-direction) elastic strain £,, and electric field E,,, such that

SH(ep, . Dy,) = 8¢ p 0y — SEp. Dy —> { Tps = Cpssps ~rakp (10)
p3>Pp3) = Op3Ops — OLp3 Lp:
. 3 e Dpy = epy3epy + €, Epy

where 0y, is the mechanical stress, D), is the longitudinal electric displacement, sz is the effective elastic stiffness
coefficient (at constant electric field), e, is the effective piezoelectric coefficient and €, . is the dielectric permittivity

(at constant strain). The virtual variation of potential energy for the PZT actuator may be wrltten as

8U, = / (551,3%3 — 8€p,€psiEpy — OE p,epss €y — 5Ep3€;33Ep3)dQ. (1)

Assuming uniform mechanical strain and electric fields along the longitudinal direction, also defining £, as the PZT
Up

height and u,, as the longitudinal displacement of the actuator at the end fixed to the cantilever beam, such that ¢, = I
P

Vv
and E3 = e the integration of Eq. 11 over the PZT volume leads to
14

U, = dupkpmuy — SupkypVy — 0Vpkppup — 8VypkpeVy, (12)
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The virtual variation of the kinetic energy of the PZT actuator is written assuming that its total longitudinal displace-

e A
and kp, = %p are the elastic, piezoelectric and dielectric stiffnesses.

where kp,;, =

. . . u
ment in z direction is i, (z) = zh—p, such that
p

/5Tpdt: —//M,,p,,i‘i,,dﬂdt. (13)

After integration over the PZT actuator volume, Eq. 13 may be written as

/5Tpdt: _/5u,,%a,,dz, (14)

where m, = p,A,h, is the PZT actuator mass. Since PZT will serve only as an actuator, it follows that the electric
voltage V), is prescribed, so that 6V, = 0, and, thus,

8U, = Supkpmity, — SupkppVy. (15)

EQUATIONS OF MOTION FOR THE COUPLED SYSTEM

Based on previous virtual variations of kinetic and potential energies and work done by external forces, for the can-
tilever beam and PZT actuator, the extended Hamilton’s principle for the coupled system may be written as

/(57}+5Tp—5US—5Up+5W) di =0 (16)

where [ 6Ty = [éu'Mgpiids, 5Us = du'K,u, SW = Su'F, and 87}, and 85U, are defined in Eqs. 14 and 15 respectively.
Considering that w(0,7) = u,(t) = L,u and w'(0,) =0, where L,, = [1 0- - - 0], the equations of motion for the coupled
system can be written as

Mz, +M,)i+ (K +Kp)u=F,+F, (7
where
m
Mp:L;%Lp, K,,:L;,kmep, Fp:L;kppr and F,:Lfvft. (18)

As stated above, f; represent the tip-sample interaction forces, that in this case, will be represented using the Lennard
Jones potentials. According to (Israelachvli, 1991) may be written as

Hir Hyry

J = 800+ w ) 6ldrm

19)

where H, and H, are the Hamaker constants for the attractive and repulsive potentials, r; is the tip-radius and w; = w(Ly, 1)
is the tip displacement amplitude (Rutzel et al., 2003).

Therefore, the coupled model accounts for the mass contributions of the cantilever beam, probe tip and PZT actuator,
the stiffness contributions of the cantilever beam and PZT actuator, equivalent force vector due to applied electric voltage
in the PZT actuator (at left-end) and force vector due to the interaction between probe tip and sample surface (at right-end).

MODEL VALIDATION AND DAMPING ESTIMATION

In real AFM operation, before starting the scanning process, a procedure called tuning is performed in order to obtain
the cantilever beam frequency response and natural frequencies. Using this data, together with geometrical measures
obtained via Scanning Electron Microscopy (SEM), provided by the Thin Film Laboratory of the Physics Institute of the
University of Sdo Paulo, a validation of the mathematical model, including effective damping estimation is performed.

VALIDATION OF THE MATHEMATICAL MODEL

The geometric parameters were taken using the images shown in Figs. 4 and 5.
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Figure 5 — Cantilever probe tip view
Figure 4 — Cantilever beam view.

Besides the values obtained through the SEM images, in order to fit the resonant frequencies of the system, a numerical
estimation of the values of the tip base radius and tip height (R, and £,), as well as the PZT actuator radius and height (R,
and ) were performed. The interaction values of H| and H, were taken from Rutzel et al. (2003) and, along with other
values, are shown in Tab. 1.

Table 1 — Known material parameters and estimated geometrical parameters based on SEM images for an AFM

cantilever.
Parameter Symbol Value Unit
Length of cantilever beam Ly 127 wm
Width of the cantilever beam by 33 um
Thickness of the cantilever beam hy 3.37 um
Cantilever beam Young Modulus E, 176 x 10° N/m?
Cantilever beam density Ps 2330 Kg/ m’
Second moment of area I 105.25 um*
Tip base radius R, 11.6 wm
Tip radius Ty 150 nm
Tip height hy 17.4 um
Tip mass my 5.6x10°12 Kg
Tip moment of inertia I 23.4x 10722 Kgm?
PZT thickness hp 0.0129 m
PZT radius R, 3x 1072 m
Piezoelectric constant €pss 23.3 C/m?
Stiffness elastic coefficient cﬁsz 4.8309 x 10 [ N/m?
Dielectric permittivity constant €pas 1.3x1078 C/Vm
PZT mass density Pp 7500 kg /m?
Repulsive Hammaker constant H, 1.3956 x 10~1° [ Jnm®
Attractive Hammaker constant H> 865 x 107 J

Figure 6 presents both experimental and numerical frequency curves and it is possible to observe that the peaks are very
similar, with nearly coincident resonance frequency. First, it was desired to match the resonance frequency, regardless of
the curve bell shape. The peak frequency obtained via experimental tuning of a real AFM was 225.45kHz, and the peak
frequency obtained via numerical simulation is 225.14kHz, which means that the relative error between them is 0.137%,
it is than concluded that the model geometric and material parameters fully meet expectations, leading to a second step
that is the estimation of experimental damping factor, that will be later used in the analysis.
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Figure 6 — Comparison between experimental data and numerical simulations

DAMPING ESTIMATION

The main idea of this section is to estimate the damping factor ¢ of the cantilever beam using the half power bandwidth
method (—3dB). Therefore, a procedure called sensitivity was performed in the AFM in order to obtain the cantilever
beam Q-factor, which will be used to validate the result obtained via half power bandwidth method. Applying the half
power bandwidth method in the obtained experimental frequency curve, follows that wy = 225.46kHz, w; = 225.10kHz
and w, = 225.73kHz.
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Figure 7 — Half power bandwidth method to estimate the equivalent damping factor

The estimation of damping factor ¢ may be performed as follows

c=L27Y 60014, (20)
26()()
which means that the cantilever beam has an equivalent damping factor of 0.14%. Using the experimental acquired
value of the cantilever beam Q-factor, Q = 358, is also possible to estimate the { damping coefficient,

1
= — =0.0014. 21
‘=30 1)
With the results of Eqs. 20 and 21, it is assumed that { = 0.14% will be adopted in the model for future simulations in
order to analyse the dynamic behavior of the system.

ANALYSIS OF THE NUMBER OF VIBRATION MODES TO BE RETAINED IN THE REDUCED
MODEL

In this section, an analysis of the number of vibration modes that should be retained in a reduced order model, in order
to properly capture the dynamic behavior of the system is performed. For that, an excitation through the PZT actuator, in
the form of a sinusoidal applied electric voltage V), = Vpsin(wt) with V,, = 11.492V and w = 202.63kHz is considered.
The frequency response function of the probe tip displacement is evaluated for different tip sample initial distances d.

The horizontal set of results in the figure 8 shows the frequency responses of the probe tip for different tip-sample
distances (d = (91,89, 86,64 )nm), while the vertical set represents the system response considering increasing the number
of vibration modes retained in the reduced-order model. It is noticeable that, within the frequency range considered
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(100 — 600kH?z), three peaks can be easily observed for the higher tip-sample distance, except for the model with only
one vibration mode, that showed to be very limited. The second and third peaks are due to the first and second resonance
frequencies of the system, whereas the first peak is due to the excitation frequency. That is why, when considering only the
first vibration mode in the reduced model, the third peak is not observed. Moreover, the more the tip-sample distance is
reduced the more important becomes the nonlinear interaction between vibration modes, because of the increasing effect
of the tip-sample interaction forces.

This leads to both a disturbance of the frequency responses curves and also a modification of the displacement distribu-
tion along the beam span. For the latter reason, the reduced-order model with only the first vibration mode was not able to
account for the local deformation of the beam tip and did not converge even for relative high tip-sample distances (86nm),
for this reason, there is no results for d = (86,64nm), fact noticed with the presence of two blanks in the first horizontal
line. The same behavior was observed for the other reduced models, such that the two modes model stopped converging
for tip-sample distances smaller than 86nm, and the three modes model stop converging for tip-sample distances smaller
than 64nm. With four vibration modes, the model converged even for very low tip-sample distances (smaller than 1nm),
and, thus, it is suggested that a reduced-order model with the first four vibration modes is satisfactory and shall be used
for following analyses.
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Figure 8 — Frequency responses of the probe tip under excitation through the PZT actuator for different

tip-sample initial distances and when considering up to four vibration modes in the reduced-order model. From
left to right: (d = (91,89,86,64)nm).

Tip-sample distance variation

The goal of this section is to observe the dynamics of the cantilever beam while the tip-sample distance d decreases.
Furthermore, it will be possible to observe the influence of the intermolecular forces in the behavior and structure of
the system. At the time history, with d = 100nm the maximum and minimum amplitudes are 88,7nm and —88,83nm
respectively. Free from intermolecular forces, the system presents a large amplitude in the transient region. In the steady
state region, the oscillation varies from —47nm to 46.8nm. With d = 20nm, there is the presence of interaction forces
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forcing the biggest amplitude to get smaller and flattening the underside of the time history.
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Figure 9 — Time response of the tip displacement using four-mode reduced model for different tip-sample initial
distances. From left to right, ¢ = (100,50,20)nm.

In the absence of the intermolecular forces (d = 100nm), three different peaks are clearly observed, the first being due
to the excitation frequency and the other due to the first two resonant frequencies. For d = 50nm, the response starts to
become very noise and several other peaks seem to appear.
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Figure 10 — Frequency response of the probe tip displacement calculated using four-mode reduced model for
different tip-sample initial distances, From left to right, 4 = (100, 50,20)nm.

When d = 20nm, the only clear response peaks are due to excitation frequency and its multiples, which highlights
the effect of the interaction forces in the system behavior. In Fig. 11, the frequency responses of the system with
different values of d are shown and it is clear that, as the distance decreases, several peaks appear. It means that the
intermolecular interactions increase while the tip-sample distance decreases. The appearance of different peaks means
that the intermolecular forces change some characteristics of the cantilever beam, like the stiffness of the system.
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Figure 11 — Frequency response of the probe tip displacement for different tip-sample distances

The purpose of the Fig. 12 is to present a compilation of all time histories at the same simulation, point to point, as
the tip-sample distance decreases. An overview of the system shows that while d decreases, the transient region disappear
and the oscillation amplitude get smaller, with a flattening of the negative region, showing that the tip starts to vibrate very
close to the sample surface.
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Figure 12 — Time response of the probe tip displacmeent with different tip-sample distances

It is also possible to conclude that the method used to obtain this result is very similar to the method used by the AFM
to obtain the point-to point interactions.

CONCLUSIONS AND FUTURE WORKS

The main idea of this work was to present a model to represent the system composed by the PZT base, cantilever
beam with tip mass under the influence of interaction forces. The obtained model presented good results when compared
with experimental ones. The validation was successfully realized, with small difference between the resonant peak of
experimental data and numerical simulation. The analysis performed varying the number of vibration modes showed that
the system considering only one vibration mode (1 dof) does not present reasonable results. With respect to the variation
of the tip distance, the system proved to be extremely sensitive to the presence of the forces of attraction and repulsion.
After these analyses, it is possible to conclude that the presented model is satisfactory for modeling the AFM system, with
easy computational implementation, and enabling a wide range of settings and analysis.
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